R plotting
R
data science
visualize
R has powerful builtin plotting capabilities
This cheatsheet uses ggplot2. For more info on the R-built-in graphics-package see: rdocumentation.org
dot & line charts
Using dataframes:
library(ggplot2)
my_plot = ggplot(myDataframe, aes(x = col1, y = col2)) + geom_point()
print(my_plot)The logic behind: You define the aesthetics (aes) and then add (+) a layer with points (geom_points)
Using vectors:
ggplot(data = NULL, aes(x = c(1,2,3,4,5), y = c(25,16,9,4,1))) + geom_point()| Styles of plot | |
|---|---|
| points | ... + geom_point() |
| line | ... + geom_line() |
| color | aes(x = ..., y = ..., color = cat_col)... different colors for different categories |
| Axis | |
|---|---|
| log scale on x | ... + scale_x_log10() |
| log scale on y | ... + scale_y_log10() |
| include 0 | ... + expand_limits(y = 0) |
Column charts
plot the values as columns:
ggplot(df, aes(x = factor(cat_col), y = value_col)) + geom_col()plot the counts as columns:
ggplot(df, aes(x = factor(value_col))) + geom_bar()Histogram
Plot distribution of values:
ggplot(df, aes(x = value_col)) + geom_histogram(binwidth=3)Box Plot
Compare different distributions:
ggplot(df, aes(x = cat_col, y = value_col)) + geom_boxplot()Plot functions
To smoothly plot a curved function:
my_func <- function(x) sqrt(x) # - x**2
x_val_df = data.frame(x_val = c(0, 10))
ggplot(x_val_df, aes(x = x_val)) + stat_function(fun = my_func, geom = "line")More info in this e-book: r-graphics.org/